der Chase, jetzt formal ...

Datenbank-Instanzen

- I Wir fixieren drei unendliche, paarweise disjunkte Mengen Δ , Δ_{null} und V.
 - lacksquare Δ ist der zugrunde gelegte Domain.
 - $\Delta_{null} = \{n_1, n_2, \ldots\}$ ist die Menge der Null-Werte. Wir sprechen in diesem Zusammenhang von "labelled nulls".
 - V bezeichne die Menge der Variablen.
- **2** Eine Datenbank-Fakt ist ein \mathcal{R} -Atom mit Argumenten aus $\Delta \cup \Delta_{null}$.
- ${f E}$ Eine Datenbankinstanz ${\cal I}$ ist eine (nicht notwendigerweise endliche) Menge von Datenbanken-Fakten.

Beispiel

$$\mathcal{I} = \{ fly(Fft, B, 600), fly(Fft, C, n_1), fly(n_2, C, n_1), \ldots \}$$

 n_1 , n_2 sind Null-Werte (labelled nulls).

Konjunktive Anfragen als Datenbank-Instanz

Den Rumpf $body(\bar{x}, \bar{y})$ einer konjunktiven Anfrage

$$Q: ans(\overline{x}) \leftarrow body(\overline{x}, \overline{y})$$

fassen wir als eine Datenbank-Instanz db(Q) auf, wobei wir die Variablen durch Null-Werte ersetzen (durch eine injektive Abbildung).

Das Ergebnis des Chase auf der Instanz db(Q) bezeichnen wir weiterhin als Q^{Σ} .

Beispiel

$$ans(X,D) \leftarrow fly(Bonn,X,D), fly(X,Bonn,D), hasAirport(X), hasAirport(Bonn)$$

db(Q):

Umgekehrt kann eine Datenbank-Instanz in eine konjunktive Anfrage umgewandelt werden:

Beispiel

ans(
$$X$$
) \leftarrow fly(X , Y , D_1), fly(Y , $Bonn$, D_2), hasAirport(X), hasAirport(Y), hasAirport($Bonn$)

Prof. Dr. Georg Lausen 6. Mai 2009 Seite 46

Der Chase-Algorithmus kann auf beliebigen endlichen (!) Datenbank-Instanzen angewendet werden, insbesondere auf db(Q), wobei Q eine konjunktive Anfrage.

Anwendbarkeit eines Chase-Schritts

- Sei $\alpha \in \Sigma$ und \mathcal{I} eine endliche Datenbank-Instanz.
- Bezeichne $\widetilde{\alpha}$ den Constraint der aus α hervorgeht indem man den \forall -Quantor und die vorangestellte Liste der allquantifizierten Variablen streicht.
- Sei $\overline{a} \in (\Delta \cup \Delta_{null})^*$.
- Das Tupel (α, \overline{a}) heißt anwendbar auf \mathcal{I} , falls $\mathcal{I} \not\models \widetilde{\alpha}(\overline{a})$.
- Der Constraint α heißt anwendbar auf \mathcal{I} falls es ein $\overline{b} \in (\Delta \cup \Delta_{null})^*$ gibt, so dass (α, \overline{b}) anwendbar auf \mathcal{I} ist.

Definition: Homomorphismen

Seien $\mathcal{I}, \mathcal{I}'$ Datenbanken-Instanzen. Ein Homomorphismus von \mathcal{I} nach \mathcal{I}' ist eine Abbildung $h: \Delta \cup \Delta_{null} \cup V \to \Delta \cup \Delta_{null}$ mit

- für alle $c \in \Delta$ gilt h(c) = c und
- für alle $R(t_1,...,t_n) \in I$ gilt $h(R(t_1,...,t_n)) := R(h(t_1),...,h(t_n)) \in I'$.

Ein Homomorphismus wird in natürlicher Weise fortgesetzt auf $(\Delta \cup \Delta_{\textit{null}} \cup V)^*$.

Unterschied zu Enthaltensein-Abbildungen?

Chase-Schritt: TGD

- Sei (α, \overline{a}) anwendbar auf \mathcal{I} , wobei α eine TGD ist. Die Liste der allguantifizierten Variablen in α sei \overline{x} .
- Der Chase-Schritt $\mathcal{I} \xrightarrow{\alpha, \overline{a}} \mathcal{J}$ ist definiert wie folgt.
 - Sei h ein Homomorphismus mit $h(\overline{x}) = \overline{a}$.
 - Für jede existentiell quantifizierte Variable y in α wähle einen "neuen" Null-Wert $n_y \in \Delta_{null}$ und definiere $h(y) := n_y$.
 - Setze $\mathcal{J} := \mathcal{I} \cup \mathit{h}(\mathit{head}(\alpha))$.

Was gilt nun in \mathcal{J} ?

Beispiel

$$\mathcal{I} = \{R(a,b)\}$$

$$\Sigma := \{ \forall x_1, x_2 \ (\mathsf{R}(x_1, x_2) \to \exists y \ \mathsf{S}(x_2, y)) \ \}$$

Chase-Schritt: EGD

- Sei (α, \overline{a}) anwendbar auf \mathcal{I} , wobei α eine EGD ist.
- Seien x_1, x_2 die beiden Variablen, welche in $head(\alpha)$ vorkommen.
- Sei h ein Homomorphismus mit $h(\overline{x}) = \overline{a}$.
- Wenn $h(x_1), h(x_2) \in \Delta$, dann ist der Chase-Schritt undefiniert, d.h. der Chase schlägt fehl.
- Ansonsten ist der Chase-Schritt $\mathcal{I} \xrightarrow{\alpha, \overline{a}} \mathcal{J}$ definiert wie folgt.
 - Definiere einen neuen Homomorphismus h', der sich von h höchstens an den Stellen x_1, x_2 unterscheidet. Falls $h(x_1) \in \Delta$ dann $h'(x_1) := h'(x_2) := h(x_1)$. Falls $h(x_1) \notin \Delta$ dann $h'(x_2) := h'(x_1) := h(x_2)$.
 - Setze $\mathcal{J} := h'(\mathcal{I})$.

Was gilt nun in \mathcal{J} ?

Beispiel

$$\mathcal{I} = \{R(n_1, n_2), R(n_1, n_3)\}\$$

$$\Sigma := \{\forall x_1, x_2, x_3 \ (R(x_1, x_2) \land R(x_1, x_3) \rightarrow x_2 = x_3)\}\$$

Das Ergebnis eines Chase-Schritts hängt davon ab ob n_1 , n_2 , n_3 Null-Werte sind, oder nicht.

Chase-Sequenzen

Eine Chase-Sequenz ist eine (nicht-notwendigerweise endliche) Folge von Chase-Schritten $\mathcal{I}_0 \overset{\alpha_0,\overline{a}_0}{\longrightarrow} \mathcal{I}_1 \overset{\alpha_1,\overline{a}_1}{\longrightarrow} \mathcal{I}_2 \ldots$, wobei wir keinerlei Annahme darüber treffen in welcher Reihenfolge Constraints angewendet werden. Falls eine solche Sequenz endlich ist und kein weiterer Chase-Schritt mehr anwendbar ist, dann sagen wir dass die Sequenz terminiert.

Achtung: unterschiedliche Reihenfolgen der Constraint-Anwendung führen zu unterschiedlichen Chase-Resultaten.

Satz

Sei $\mathcal J$ die letzte Datenbank-Instanz in einer terminierenden Chase-Sequenz ausgehend von der Instanz $\mathcal I$.

- Es gilt $\mathcal{J} \models \Sigma$.
- Es gilt $\mathcal{J} \models \mathcal{I}$.

Sei n ein Null-Wert.

Beispiel

$$\mathcal{I} = \{ R(a, b), R(a, n) \}$$

$$\Sigma := \{ \forall x_1, x_2 \ (R(x_1, x_2) \to \exists y \ S(x_2, y)), \\ \forall x_1, x_2, x_3 \ (R(x_1, x_2) \land R(x_1, x_3) \to x_2 = x_3) \}$$

Welche Chase-Sequenzen sind möglich?

Welche Eigenschaften haben verschiedene Chase-Ergebnisse gemeinsam?

Universelle Eigenschaft

Satz

Sei $\mathcal J$ die letzte Datenbank-Instanz in einer terminierenden Chase-Sequenz ausgehend von der Instanz $\mathcal I$.

Falls $\mathcal K$ eine Datenbankinstanz ist mit $\mathcal K \models \mathcal I \cup \Sigma$ dann gibt es einen Homomorphismus h von $\mathcal J$ nach $\mathcal K$.

Deshalb bezeichnen wir \mathcal{J} als universelle Lösung.

Folgerung

Für je zwei Chase-Ergenisse $\mathcal{J}, \mathcal{J}'$ gibt es einen Homomorphismus von \mathcal{J} nach \mathcal{J}' und einen Homomorphismus von \mathcal{J}' nach \mathcal{J} .

Dieser Punkt erlaubt es uns von **dem** Chase-Ergebnis \mathcal{I}^{Σ} zu sprechen, d.h. ein Chase-Ergebnis ist eindeutig bis auf Homomorphie, was für alle bisher bekannten Anwendungen ausreicht. Mit anderen Worten: jede Anwendungsaufgabe kann mit jedem beliebigen Chase-Resultat gelöst werden.

Eine andere Formulierung ...

Satz

Seien Q und Q' konjunktive Anfragen und existiere Q^{Σ} . Dann gilt:

- $Q \sqsubseteq_{\Sigma} Q'$ genau dann wenn $Q^{\Sigma} \sqsubseteq Q'$.
- $Q \sqsubseteq_{\Sigma} Q'$ genau dann wenn $Q^{\Sigma} \sqsubseteq Q'^{\Sigma}$.

Beweis der zweiten Aussage mit folgendem Lemma (Anfragen werden als Datenbank-Instanz betrachtet).

Lemma

Sei $\mathcal{I} \models \Sigma$ und h ein Homomorphismus von \mathcal{J} nach \mathcal{I} . Falls \mathcal{I}^{Σ} endlich ist, dann kann h zu einem Homomorphismus von \mathcal{J}^{Σ} nach \mathcal{I} erweitert werden.

dass h_{i+1} ein Homomorphismus von \mathcal{J}_{i+1} nach \mathcal{I} ist.

Reweis des Lemmas:

Induktion über die Anzahl der Chase-Schritte:

- Falls keine Chase-Schritte gemacht werden ist die Behauptung klar.
- Wir skizzieren den Fall eines Chase-Schritts $\mathcal{J}_i \xrightarrow{\alpha,\overline{a}} \mathcal{J}_{i+1}$ für den Fall, dass eine TGD angewendet wird. Gemäß Induktionsvoraussetzung gibt es einen Homomorphismus h_i von \mathcal{J}_i nach \mathcal{I} mit $h_i \supseteq h$. Sei $\alpha = \forall \overline{x}(\varphi(\overline{x}) \to \exists \overline{y}\psi(\overline{x},\overline{y}))$. Seien \overline{n} die Null-Werte, welche in diesem Schritt neu eingeführt werden, d.h. $\mathcal{J}_{i+1} \models \psi(\overline{a},\overline{n})$. Es gilt $\mathcal{J}_i \models \varphi(\overline{a})$, also $\mathcal{I}^{\Sigma} \models \varphi(h(\overline{a}))$. Wir wissen, dass $\mathcal{I} \models \Sigma$ gilt, demnach gibt es \overline{b} , so dass $\mathcal{I} \models \psi(h(\overline{a}),\overline{b})$. Wir setzen h_{i+1} gleich h_i auf allen Werten aus \mathcal{J}_i und setzen außerdem $h_{i+1}(\overline{n}) := \overline{b}$. Man rechnet nach,
- Für den Fall eines Chase-Schritts mit Hilfe einer EGD, setzen wir $h_{i+1} = h_i$.

Prof. Dr. Georg Lausen 6. Mai 2009 Seite 58

Unentscheidbarkeit der Chase-Terminierung

Satz

Sei Σ eine Menge von Tuple-generating und Equality-generating Dependencies. Es ist im Allgemeinen unentscheidbar ob der Chase mit Σ auf einer fixen Instanz \mathcal{I} terminiert.

⇒ Problematisch in der Praxis

Hinreichende Terminierungsbedingung für den Chase

Lösungsansatz

Hinreichende, statisch überprüfbare Bedingungen über der Constraintmenge, die Chase-Terminierung auf allen Instanzen garantieren.

Hinreichende Terminierungsbedingungen für den Chase

Es wurden verschiedene solcher Bedingungen entwickelt, z.B.

- Acyclicity (wird in der Vorlesung behandelt)
- Weak Acyclicity (wird auf Übungsblatt 3 behandelt)
- Stratification
- ..
- ⇒ Diese Bedingungen erlauben es, den Chase-Algorithmus in vielen praxisrelevanten Szenarien anzuwenden

Acyclicity

Definition

Sei Σ eine Menge von Tuple-generating und Equality-generating Dependencies. Konstruiere den *Relationsgraphen rel* $(\Sigma) = (V, E)$ wie folgt. Für jede Tuple-generating Dependency $\varphi_{trd} \in \Sigma$

$$\varphi_{tgd} := \forall \ \overline{x}(R_1(\overline{x}) \wedge \cdots \wedge R_m(\overline{x}) \rightarrow \exists \ \overline{y}S_1(\overline{x}, \overline{y}) \wedge \cdots \wedge S_n(\overline{x}, \overline{y}))$$

- erweitere V um die Menge aller Relationsbezeichner in φ_{tgd} , d.h. setze $V := V \cup \{R_1, \dots, R_n, S_1, \dots, S_m\}$ und
- erweitere E um alle Kanten $R_i \to S_j$ für alle $1 \le i \le m$, $1 \le j \le n$, d.h. setze $E := E \cup \{(R_i, S_j) \mid 1 \le i \le m, 1 \le j \le n\}$.

Anmerkung: Equality-generating Dependencies spielen bei der Konstruktion des Relationsgraphen keine Rolle.

Definition

Sei Σ eine Menge von Tuple-generating und Equality-generating Dependencies. Σ heißt *azyklisch* genau dann wenn der Relationsgraph $rel(\Sigma)$ keinen Zyklus enthält.

Satz

Sei Σ eine azyklische Menge von Tupel-generating und Equality-generating Dependencies. Dann terminiert der Chase-Algorithmus mit Σ für jede Datenbankinstanz.

Intuition: Wenn der Relationsgraph keine Zyklen besitzt können Constraints nie zyklisch feuern.

Beispiel Acyclicity

Beispiel

Betrachte die Constraintmenge $\Sigma_1 := \{\alpha_1\}$ mit

$$\alpha_1 := \forall x_1, x_2, y \ \mathsf{fly}(x_1, x_2, y) \to \mathsf{hasAirport}(x_1) \land \mathsf{hasAirport}(x_2).$$

Der Relationsgraph $rel(\Sigma_1) = (V_1, E_1)$ ist definiert als

$$V_1 := \{ \text{ fly, hasAirport } \},$$

 $E_1 := \{ \text{ (fly,hasAirport) } \}.$

Offensichtlich enthält $rel(\Sigma_1)$ keinen Zyklus. Gemäß vorigem Satz terminiert der Chase mit Σ_1 für jede Datenbankinstanz.

Beispiel Acyclicity

Beispiel

Betrachte die Constraintmenge $\Sigma_2 := \{\alpha_2\}$ mit

$$\alpha_2 := \forall x_1, x_2, y \ \mathsf{rail}(x_1, x_2, y) \rightarrow \mathsf{rail}(x_2, x_1, y).$$

Der Relationsgraph $rel(\Sigma_2) = (V_2, E_2)$ ist definiert als

$$V_2 := \{ \text{ rail } \},$$

 $E_2 := \{ \text{ (rail,rail) } \}.$

- lacktriangledown $rel(\Sigma_2)$ enthält einen Zyklus \implies keine Terminierungsgarantien ableitbar.
- lacktriangle Man kann sich leicht klarmachen, dass der Chase mit Σ_2 dennoch immer terminiert. Dies zeigt, dass Acyclicity nur eine hinreichende Bedingung ist.

Komplexere hinreichende Bedingungen notwendig um hier Chase Terminierung abzuleiten, siehe z.B. Weak Acyclicity auf Übungsblatt 3.

Anfrageminimierung mittels Chase

Satz

Sei Σ eine Menge von Tuple-generating und Equality-generating Dependencies und Q eine Konjunktive Anfrage. Wenn Q^{Σ} existiert, dann

- ist jede minimale Anfrage $Q' \equiv_{\Sigma} Q$ eine Teilanfrage von Q^{Σ} .
- $\blacksquare \text{ gilt für jede Teilanfrage } Q' \subseteq Q^\Sigma \colon Q' \equiv_\Sigma Q^\Sigma \Leftrightarrow Q'^\Sigma \sqsubseteq Q^\Sigma.$

Beweis der zweiten Behauptung

Umformen der rechten Seite gemäß dem Satz auf Folie 43 ergibt die Äquivalenz $Q' \equiv_{\Sigma} Q^{\Sigma} \Leftrightarrow Q' \sqsubseteq_{\Sigma} Q^{\Sigma}$.

Diese Äquivalenz gilt per Definition von \equiv_{Σ} genau dann wenn $Q^{\Sigma} \sqsubseteq_{\Sigma} Q'$ gilt. Aus der Annahme $Q' \subseteq Q^{\Sigma}$ folgt aber direkt $Q^{\Sigma} \sqsubseteq Q'$, was $Q^{\Sigma} \sqsubseteq_{\Sigma} Q'$ impliziert.

Anfrageminimierung mittels Chase

Algorithmus zur Berechnung minimaler Σ-äquivalenter Anfragen

Eingabe: Q, Σ

- I Berechne Q^{Σ} (falls existent).
- **2** Betrachte alle Teilanfragen $Q' \subseteq Q^{\Sigma}$ bottom-up, d.h. erst Anfragen mit einem Atom, dann Anfragen mit zwei Atomen ...
- ☑ Überprüfe jeweils, ob $Q'^{\Sigma} \sqsubseteq Q^{\Sigma}$. Falls ja, so ist $Q'(\equiv_{\Sigma} Q^{\Sigma} \equiv_{\Sigma} Q)$ eine minimale äquivalente Anfrage zu Q unter Σ .
- \blacksquare Betrachte ggf. noch ausstehende Teilanfragen gleicher Größe, um weitere minimale Σ -äquivalente Anfragen zu finden.

Beachte: Es können mehrere minimiale Anfragen existieren, i.A. sogar exponentiell viele.

Anfrageminimierung mittels Chase

Beispiel

Betrachten Sie die Constraintmenge $\Sigma = \{\alpha_1, \alpha_2\}$ mit

$$\alpha_1: \forall x_1, x_2, d \text{ (fly}(x_1, x_2, d) \rightarrow \text{hasAirport}(x_1) \land \text{hasAirport}(x_2))$$

 $\alpha_2: \forall x_1, x_2, d \text{ (fly}(x_1, x_2, d) \rightarrow \text{fly}(x_2, x_1, d))$

und die Anfrage Q: ans $(X) \leftarrow \text{fly}(Bonn, X, Y)$, hasAirport(X).

Nach Chase mit α_1 und α_2 erhalten wir Q^{Σ} :

$$ans(X) \leftarrow fly(Bonn,X,D), fly(X,Bonn,D), hasAirport(X), hasAirport(Bonn)$$

Wir betrachten nun die Teilanfragen von Q^{Σ} bottom-up und stellen fest, dass für

$$Q'$$
: ans $(X) \leftarrow \text{fly}(Bonn,X,D)$
 Q'' : ans $(X) \leftarrow \text{fly}(X,Bonn,D)$

die Beziehungen $Q'^{\Sigma} \sqsubseteq Q^{\Sigma}$ und $Q''^{\Sigma} \sqsubseteq Q^{\Sigma}$ gelten. Folglich sind Q' und Q'' minimale Σ -äquivalente Anfragen zu Q.

Prof. Dr. Georg Lausen 6. Mai 2009 Seite 6